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Ruthenium-(C=NMe2) bond lengths are symmetrical, 
with R u ( I l ) - C ( I ) = 2.039 (4) A, Ru(12)-C( l ) = 2.018 
(4) A, Ru(21)-C(2) = 2.034 (5) A, and Ru(22)-C(2) = 
2.037 (5) A. Distances within the Me2NC ligand ( C ( I ) -
N( I ) = 1.279 (5) A, C(2)-N(2) = 1.280 (6) A and N - M e 
= 1.455 (7)-1.481 (7) A) are consistent with there being a 
C = N linkage. Since the ligand acts as a three-electron 
donor, it should presumably be written as Me 2 N + =^ - C-. 

Finally, we note that a species initially formulated as 
HFe3(CO)i 1(NMe2)16 has more recently been character­
ized as HFe3(CO)io(CNMe2)1 7 by spectroscopic methods, 
although details of the metal-(CNMe2) bonding were not 
considered. This complex appears to be the iron analogue of 
our present ruthenium complex. 
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The Chemistry of Silylcarbene. V. 1,2-Silaoxetane 
Intermediate in the Gas Phase Decomposition of SiIyI 
Phenyl Ketones. New Route for the Formation of 
a Silicon-Carbon Double Bond1 

Sir: 

A number of reactions suggest the formation of short­
lived silicon olefin analogues during the pyrolysis and the 

photolysis of silacyclobutane,23 disilane,45 silabicycloocta-
diene,67 and silyldiazomethane.1-8-10 Some chemical evi­
dence for the existence of silicon analogues of olefins is the 
reaction of monosilacyclobutane with water vapor, ammo­
nia, alcohols, imines, nitriles, and dienes.2 Barton and 
Kline" found that the copyrolysis of 1,1 -dimethyl- 1-silacy-
clobutane with isobutyl methyl ketone resulted in the for­
mation of cyclosiloxane (mainly, trimer), ethylene, and a 
corresponding new olefin, and suggested a possible 1,2-si-
laoxetane intermediate as an adduct of M e 2 S i = C H 2 and 
the carbonyl compound. We wish to report here the revers-

R2Si 

G R'iC—0 
— [R2Si=CH2] <• 

R2Si O -IT2C = CH2 

- [R2Si=O] (R2SiO)3 

^ , 

ible formation of a silicon-carbon double bond from a 1,2-
silaoxetane intermediate generated in the decomposition of 
silyl phenyl ketones. 

Complete pyrolysis of trimethylsilyl phenyl ketone (I) 
was conducted in a nitrogen flow system (30 cm3/min, 
500°) and the pyrolysate collected at - 1 9 6 ° . Analysis of 
the pyrolysate by gas chromatography revealed four main 
components and a total absence of silyl phenyl ketone. Sep­
aration of the four components by preparative gas chroma­
tography afforded pure samples of cyclosiloxane (25%), sty-
rene (33%), benzaldehyde (12%), and a-trimethylsilyl-
styrene (24%). These products were identified by compari-

500° 

O 
Il 

(CH3)3SiCPh 
I 

PhCH=CH2 + PhCHO + [(CH3)2SiO]3 + PhC=CH2 

Si(CHa)3 

son of their GLPC retention times and NMR and ir spectra 
with those of authentic compounds. Pyrolysis of II at 500° 
led to a-dimethylphenylsilylstyrene (8%), together with the 
styrene (5%), benzaldehyde (8%), and the siloxy derivative 

O 

(CH3J2PhSiCPh 
II 

500° 

+ PhCH=CH2 

(CH;i)2PhSi 

Ph 

+ 

=CH 

PhCHO 

' + t 
+ 
H Ph 

I 0 

/ \ 
Me Me 

III 

III (17%). The structure of III follows from the 1H N M R 
spectrum (CCl4, r 9.58, s, 3 H; 9.52, s, 3 H; 3.92, s, 1 H; 
3.20-2.27, m, 9 H) and the presence of infrared bands at 
1020 and 1045 cm - 1 . A reasonable pathway for the forma­
tion of these products is shown in Scheme I. The proposed 
first step, the rearrangement of silyl phenyl ketone to form 
siloxyphenylcarbene, is very similar to the photoisomeriza-
tion of silylketone in a polar solvent previously reported by 
Brook.12 

The intermediate (V) in the second step is almost certain­
ly formed by an insertion of carbene (IV) into the proxi­
mate carbon-hydrogen bond of the silyl methyl group. The 
source of III is apparently the insertion of siloxycarbene 
into the C-H bond of the phenyl group on silicon. In this 
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step the expected carbon-carbon rearrangements products 
were not observed.'3 

The proposed third step in the overall reaction is the 
cleavage of V to styrene, benzaldehyde, and cyclosiloxane. 
In this step the lack of stability in the l,2-silaoxetane (V) 
causes the silicon-carbon and silicon-oxygen bonds to rup­
ture giving silicon-carbon and silicon-oxygen double bonds. 
The compounds, a-trimethylsilylstyrene and a-dimethyl-
phenylsilylstyrene are the evident products of cleavage of 
l,2-silaoxetane (VI) formed by the reaction of a silicon-
carbon double bond and silyl phenyl ketones (I and II). The 
comparatively low yields of volatile products encountered in 
the neat pyrolysis of I and II are not suprising, since all of 
the postulated intermediates should be very prone to poly­
merization. 

Pyrolysis of I in the presence of benzophenone gave I, l-
diphenylethylene (17%) together with similar yields of 
(Me2SiO)3 (24%), styrene (32%), and benzaldehyde (27%). 

O 
500° 

(CH3)JSiCPh + Ph2C=O 

Ph2C=CH2 + PhCH=CH2 + PhCHO + [(CH3)^iO]3 

The formation of 1,1-diphenylethylene is due to the cleav­
age of silaoxetane resulting from the reaction of a silicon-
carbon double bond with benzophenone. 

In summary the present work demonstrates that 1,2-si-
laoxetane resulting from C-H insertion of siloxycarbene 
undergoes the Si-C and Si-O bond cleavages in almost 
comparable ratio. Although the strength of the Si-O bond 
excludes an initial rupture of 1,2-silaoxetane, the product 
ratio provides evidence for the competitive Si-C and C2-C3 
bond scission as the initial step of thermal silaoxetane de­
composition.14 

— S i — O 

— C—CHPh 
S i = O + PhCH=C 

— S i — O 

a - h I 
— C-(-CHPh 

b process 

-Si—O 

-C- CHPh 
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Acidities of Carbon Acids. VII. Conjugation and 
Strain in Some Cyclopropyl Anions 

Sir: 

Electron-withdrawing groups (EWG), such as nitro, car-
bonyl, and sulfonyl, have been shown by equilibrium acidity 
measurements in dimethyl sulfoxide (DMSO) solution to 
have acidifying effects of over 30 powers of ten on a -C-H 
bonds in methane carbon acids, CHaEWG.1 ,2 The present 
paper extends the study to the SO2CF3 group,3 and to cy­
clopropane carbon acids, c-PrEWG (Table I).4 

There is abundant evidence that carbanions a to nitro 
and carbonyl groups derive much of their stability by rehy-
bridizing from sp3 to sp2, thus allowing derealization of 
charge to the more electronegative oxygen atoms, but it has 
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